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A method for solving the adiabatic gasdynamic equations on an arbitrarily distorting 
axisymmetric grid is described. It is used to apply the exact Rankine-Hugoniot relations at 
the outer boundary of the grid so that non-spherical explosions can be followed accurately 
and cheaply. It is found that a flux splitting algorithm gives a reliable difference scheme for 
the transformed equations. The method is illustrated by applying it to explosions in 
exponential atmospheres. The ideas behind a convenient approximation for such phenomena 
are used to check the accuracy both of the code and the approximation itself. Some further 
uses for this type of scheme are indicated. 

1. INTRODUCTION 

The primary motivation for the work described in this paper came from a single 
astrophysical problem: radiative supernova remnants in a non-uniform interstellar 
medium. A certain amount of energy (about 105’ ergs) is injected into a cold medium 
(density of order 10ez4 g cm-‘) and forms a blast wave which is initially adiabatic. 
At later stages, however, radiative energy losses occur behind the blast wave shock in 
such a way that the density increases catastrophically. If the surrounding medium is 
uniform a one-dimensional spherically symmetric calculation can be made and Falle 
] 1 ] has outlined the complex sequence of events. Falle uses a Lagrangian, charac- 
teristic scheme with. shock fitting and variable mesh sizes, and this gives a good idea 
of the level of sophistication needed to model the very thin cooled region adequately. 

For a non-uniform medium, the next stage is to make an axisymmetric calculation. 
During the adiabatic phase one can get away with conventional Eulerian difference 
schemes and calculations have been made by Garlick [2] for a magnetic explosion 
and by Falle and Garlick [3] for an explosion near a density discontinuity. In both 
cases the time-split FCT-SHASTA algorithm of Book, Boris and Hain [4] was used. 
Such schemes do not resolve very well the swept-up interstellar medium behind the 
shock, as was also noted by Chevalier and Gardner [S] for a supernova in an 
exponential atmosphere. It is clear, then, that these schemes will fail completely when 
cooling is important. A significant fraction of the mass is concentrated in a very thin 
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layer which cannot be resolved on a two-dimensional Eulerian grid and, in particular, 
the fraction of the initial energy which is radiated cannot be calculated at all. 

Precisely because of the thinness of this layer, however, it should be possible to 
find asymptotic analytic approximations for its dynamical behaviour. In principle we 
can use the results of such an analysis as boundary conditions on an interior flow 
which is approximately adiabatic. There are a number of ways in which this could be 
done and we shall not discuss them further. Whatever way is chosen, the First step is 
to construct a code in which the boundary of the numerical grid coincides at all times 
with position of the blast wave. Such a code is the subject of this paper and we use it 
here to model adiabatic explosions into a medium of varying density. The numerical 
asymptotic matching techniques will be the subject of future papers. 

Of course, there are many other problems, both astrophysical and terrestrial, which 
this approach, and the present scheme, can be used for. Regions bounded by 
ionisation fronts or detonation waves form examples. It can be used to solve any two- 
dimensional hyperbolic system in a region with a free boundary and known or 
calculable external conditions and is accurate and cheap. Further, it gives the position 
of the free boundary explicitly. 

The code requires the following ingredients in order to perform the function 
described above. 

(a) A Mapping. A suitable time-dependent mapping is required which 
transforms the explosion (which possibly is of a peculiar shape) onto a simple 
numerical grid. 

(b) Equations. The hydrodynamic equations must be written in the 
transformed coordinates in as useful a form as possible. 

(c) A D#Zrence Scheme. A robust and general difference scheme is needed 
which can cope with equations which may be rather far removed from the conven- 
tional hydrodynamic equations. 

(d) Boundary Conditions. In addition to providing conditions on the interior 
physical variables, in this case the post-shock flow, the boundary conditions must 
determine how the grid evolves at each time step. 

These ingredients are the subject of Sections 2-5 respectively. 
In order to test the code we have looked at explosions in an exponential 

atmosphere. In the absence of reliable numerical solutions for this problem, we have 
used a somewhat roundabout checking procedure which also includes an assessment 
of the Laumbach-Probstein (LP) method. This method is simply to divide the 
explosion energy equally between each solid angle and to make a one-dimensional 
spherical calculation for each angle. In their paper [6] Laumbach and Probstein 
introduced a further approximation which we shall not need for the present work. At 
any rate the LP method is the principal analytic simplification for two-dimensional 
explosions. This approximation gives a slightly modified set of equations which we 
have also programmed. Since the two sets of equations are so similar we guess that 
the numerical method is of comparable accuracy in each case. The LP results for a 
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problem with known analytic solution then gives an indication of the accuracy of the 
method as a whole. They can also be compared with the results of the proper two- 
dimensional calculations as a test of the effectiveness of the LP method. All of this, 
together with the results of spherical runs, will be described in Section 6. 

We summarise our conclusions in Section 7. 

2. THE MAPPING 

We work in cylindrical polar coordinates, (z, a), where z is the axial distance and 
rn the cylindrical radius. In general the boundary of the region will be given in 
parametric form by the functions z,(8), a,(B) and we want to map the interior of our 
region onto a suitable computational grid with coordinates (x, y). As far as possible 
we would like the mapping to satisfy the following (contradictory) set of 
constraints. 

(i) It should be reasonably conformal since physical intuition suggests that in a 
hyperbolic system information will not be transferred properly between cells which 
are badly distorted. 

(ii) The magnification should be such that the time step does not become too 
small under the Courant-Friedrichs-Lewy (CFL) condition. That is, locally fine 
grids should be avoided. 

(iii) It must cope with peculiar shapes (which may be multivalued if z is 
expressed as a function of a or vice versa). 

(iv) It should be computationally cheap. 

There is also a subsidiary problem as to the shape of the computational grid. 
Obviously a rectangular grid is inappropriate for the distorted spherical shapes 
expected and this suggests that the mapping should be done in two stages: first from 
the physical region to a disc, and then from the disc to the computational grid. Only 
the first stage would be time dependent and the parameter 0 can then be the usual 
polar angle in the disc. 

Now it is possible to solve problems (i), (iii) and (iv) simultaneously using a 
conformal mapping from the explosion to the unit disc. The Riemann Mapping 
Theorem assures us that it can be done non-singularly for all shapes and we can use 
Fast Fourier Transform (FFT) techniques to evaluate the mapping. However, there 
are problems in truncating the Fourier series when we discretise and, more fundamen- 
tally, it is known that property (ii) is very badly violated when the shape becomes 
appreciably non-spherical. This is described, for example, by Meiron, Orszag and 
Israeli [7] for the water wave problem which is not constrained by the CFL con- 
dition. 

This leads us to consider the much simpler mapping: 

z = zo(t) + R(B, t)r cos 8, 

m = R (t?, t)r sin 8. 
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FIG. 1. Explosion into a uniform medium. From top to bottom are shown the computational grid, 
contour maps of density, pressure and temperature and a velocity plot. Each of the contour plots shows 
the first 20 contours in units of 0.5 for the density, 0.0005 for the pressure and 0.002 for the temperature 
(defined as p/p). See text for futher details. 
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We simply choose a point on the axis given by zO(t) and take radially distorted polar 
coordinates. Evidently we cannot cope with very peculiar shapes, but for these the 
conformal mapping would in any case be impractical. This maps the explosion into 
the unit half disc O<r< 1, 0<6<z. 

Computationally, too, this is cheap as we use bicubic splines to interpolate from 
the discrete form of R(0) given by the boundary conditions to the various values of 0 
at which it is required internally, rather than the FFT required for conformal 
mapping. Even so, much time is spent on these calculations and no doubt 
computational expense could be significantly reduced with cruder interpolation. 

The function z,(t) could be chosen so as to maximise the allowed time step though 
in all the calculations presented in this paper we take z0 = 0, so that the origin 
remains at the initial site of the explosion. 

Coming now to the mapping from the half disc to the grid, we wish to avoid the 
small time step which would result from a rectangular computational area associated 
with polar coordinates. We therefore use the following equal area mapping from the 
disc to a triangle: 

r = x, o<x< 1, 

This transformation will thus not affect the time step and the distortion is everywhere 
moderate. 

The effect of these mappings can be understood further by reference to the top 
parts of Figs. l-3. These show the appearance of the distorted computational grid in 
physical space. In Fig. 1 the mapping from the half disc to the computational triangle 
is shown and in Figs. 2 and 3 the effect of the non-spherical distortion characteristic 
of an explosion in a density gradient is added. What is not obvious from these 
diagrams is that the expansion of the grid, due to the change of shape, is purely radial 
(unlike the expansion of the gas, of course), though it can be confirmed by tracing the 
image of radial lines. 

The triangular computational area causes no particular problems as long as the x 
and y differences are made equal. With 6x = Sy = l/N the triangle contains N* cells. 
In all our runs we have N = 20. It can be seen that grid points are used very 
economically compared with conventional schemes, and since the flow behind the 
blast wave will normally be quite smooth it can easily be resolved with such a low 
value of N. 

3. THE EQUATIONS 

We now consider the gasdynamic equations transformed to our computational 
grid. In the next section we use a difference scheme which exploits the conservative 
properties of the equations and so we would like them to be in conservation form as 
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FIG. 2. As Fig. 1 for an explosion into an exponential atmosphere, p,, = exp(--z/2). Units as Fig. 1, 
except velocity vectors are drawn at half the scale. 
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FIG. 3. As in Fig. 2 with LP code. 
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far as possible. Of course, it is only the Cartesian components of momentum which 
are conserved and so there will inevitably be a source term for the m momentum 
component. This is the reason why we shall not consider the x and y velocity 
components, but u, and ur. 

Begin by defining a four component vector, (p, and three four component functions 
of o as follows: 

where 

E=~p(u~+~~)+~. 
Y---l 

All the symbols have their usual meaning. F and G are the m and z flux vectors for 
Cartesian coordinates and S is a source vector. Note that the variables p, u,, u,, p 
and E are acting merely as parameters to define F, G and S in terms of p. Note also 
that F, G and S are homogeneous functions of (p, that is, F(aq) = aF(p) for any 
number CL The axisymmetric equations of motion are 

A 
$ + -& (F(@)) + ; (G(6)) = +), 

where 

We now consider a general time-dependent transformation, z = z(x, y, t) and tir = 
m(x, y, t), into the computational variables x and y. After some algebra the equations 
become 

@I* aH c?H,, -S(rp*) 
-+Yp+ay-7’ at 

where 

q~*=Jq?=tisJrp, 

J= a(ZP 4 
--=+R2, 

w9 Y> 

Hx(‘P*, x, Y, t) = h,,F(q*) + h,,G(cp*) + h,,cp* 

(1) 

(2) 

(3) 
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and similarly for H,,. The coefficients are given by 

h,,=f~=+$(R sin 19), 

h,, =f$--$ (Rcose+ (+e)~(Rcose)), 

hyl=-f$---$ 

Note that the fluxes H, and H, are still homogeneous functions of q*. 
To sum up, we have found that the natural variables are the rp* defined by (2) 

and which vanish on the axis, m = 0. Their fluxes are linear combinations of 
themselves and the Cartesian fluxes with coefficients consisting of derivatives of the 
transformation as given by (3). The next task is to find a robust way of solving 
system (1). 

4. THE DIFFERENCE SCHEME 

Our first attempts to discretise (1) were a continuation of our previous experience 
with FCT-SHASTA. Zalesak [8] gives a clear acount of how to construct quite 
general Flux Corrected Transport (FCT) algorithms from high- and low-order 
difference schemes and gives a flux correction procedure applicable in 
multidimensions. We used a simple diffused-antidiffused Lax-Wendroff scheme, but 
found it to be very unstable, particularly near the axis. It seems that some care is 
needed in choosing the correct method for particular problems when using FCT 
techniques and since it was not clear how to proceed with this in our case it was 
decided to experiment with a different approach which has fewer free parameters, 
namely, flux splitting. 

The flux splitting method is an attempt to take account of the way information is 
propagated .at the characteristic velocities, that is, the eigenvalues of the Jacobian 
matrix t?H/&x In one spatial dimension differential forms exist which are zero along 
characteristics (and integrable for hornentropic flow leading to Riemann invariants). 
The situation is more complicated in multidimensions, as described by Butler [9], for 
example, and an alternative method is flux splitting, an idea which is also related to 
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the Godunov approach to the numerical solution of hyperbolic equations, as 
discussed by an Albada, van Leer and Roberts [ lo]. One writes H = H+ + H , 
where Hf is the flux due to information travelling in the positive direction in the 
relevant coordinate. However, it should be emphasized that there is no direct 
mathematical justification for flux splitting since there is not a part of the flux which 
is directly due to effects associated with each characteristic. Thus any method is 
somewhat arbitrary and should be judged on how it performs. 

The method actually used is described by Steger and Warming [ 11 J and depends 
on the homogeneity of H, and H, in o. Because of this 

Now aH/&p can be expressed as a sum 

where C, and R, are a set of normalised eigencolumns and eigenrows of aH/acp, that 
is, 

R %zuR 
3 nn’ 

R,C, = d,,. 

We can then simply put 

H(rp) = H+(P) + H-(P), 

where 

H+(p)= \’ M,(a 
InI;;;‘> 

and similarly for H-(p). The actual calculation of the eigenvectors for the linear 
combination (3) is straightforward (after a little practice) and with some care the 
calculation of H+(p) or H-(q) for a given state ~7 can be reduced to a minimum for 
the various subsonic and supersonic cases. Alternatively, the formulae for the fluxes 
can be taken directly from the Steger and Warming paper [ 111. 

With a method for flux splitting we can proceed analogously to the way described 
by van Albada et al. [lo]. Given a set of ~1 (dropping the *) at time level k on the 
grid, ~f,~, we use an averaging function to get values for @/ax, @/ay, aH,.ax, 
aHJay in each cell. Typically 

au, k - =laVe(~:+,,j-co:j,~:,j-~:-l,j), ax i,j 6X 

aH,” 
ay i,j 

= i ave(H((pf,j+ 1) - ff(Pf,j), H(9f.j) - H(Pf,j- I))* 
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The averaging function is 

b*a + a*b 
ave(aTb)= a2 +bZ 

as described by van Albada et al. with their bias set equal to zero to avoid bothering 
with a free parameter. The average is applied component by component. Experiments 
with simple one- and two-dimensional problems were made with the method and it 
was not found that the insertion of a bias, or vector-wise averaging, had any great 
effect. States are then defined at each of the four boundaries of the cell at the k + f 
time level, and also at the cell centre. For compactness of notation these states are 
denoted by (p~~,~‘, of,::“, (p~,~“*, where, for example, e$,‘,‘jl’ is the value of q 
midway between i, j and i + 1,j evaluated from the properties in the i, j cell. Thus it 
refers to the same point as ~r,‘:!‘,j, which was evaluated, however, from properties in 
the i + I,j cell. A typical formula is 

Then write 
Hk+ L/2 - Hi (qf:,‘j/*) + H;(qf::!‘,j) x i+ 1/2,j - 

and similarly for H, so that eventually 

The whole scheme may then be coded on our triangular x, y grid. The greatest 
complication is in calculating the h coefficients in the sum (3) at the appropriate time 
levels, taking the grid distortion into account. 

The time step is determined from the characteristic speeds of the H, and H,, and a 
Courant number, K, assuming a generalised CFL condition: 

&=K]n$(min] 6x ” I)/, 
ma% I WfJl ’ max, I Wf,)l 

where u,(H) stands for the nth eigenvalue of ~?H/aq, as described above. 

5. BOUNDARY CONDITIONS 

In addition to the usual function of providing boundary values for the physical 
variables, the boundary conditions also determine how the grid evolves via 
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consistency conditions. In what follows we restrict ourselves to the case of a shock 
propagating into a medium with known properties but the way to generalise to other 
situations should be clear. 

If the position of the shock is known at all times, then the Rankine-Hugoniot 
conditions can be solved to give the values immediately behind the shock. In our 
transformed variables, with the shock lying at x = 1, they are simply 

[H,] = 0. 

This reflects the fact that all four characteristics enter the shock from in front. But 
there is also one characteristic which arrives from behind and it is the information 
obtained from this that determines the velocity of the shock. This velocity enters the 
definition of H, (3) via A,,. 

It is not immediately clear how this consistency condition should be incorporated 
into the code. In one spatial dimension, one can obtain a relationship between the 
post-shock gradients and the shock acceleration, but it is simpler to try to use a time 
integrated version of this. This we do by equating the H: determined from the 
internal variables to that obtained from the shock conditions. It can be seen from (4) 
that Hz is a projection of H, onto the appropriate eigencolumn, C+ : 

so that 

R + 6~) H: 0~) = R + ((4) H,(v) = R + ((~1 HARJ 

Here Mt, C+ and R + have the same meaning as in the previous section, and apply 
to the characteristic entering the shock from behind; (p,, is the state of the material in 
front of the shock. It may be noted that this shows that flux splitting is equivalent to 
the expansion of the flux as a sum of eigenvectors of i?H/&p. Thus the homogeneity 
property is not required if this definition is used. In any case the discretised form of 
the boundary condition is (referring to the definitions of the previous section) 

This is a linear scalar equation for dR/dt at the k + l/2 time level. The specification 
is completed by 

Finally we need to impose conditions on the axis y = kx. These are trivial for the 
functions rp* and the fluxes H, and H,, since they are zero there. In fact the cells are 
arranged so that the axis cuts the cell sides at their midpoints (rather than their 
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corners) at 45” on the computational grid. Thus we have series of cells for which the 
boundary conditions give two of the fluxes as zero although the value of q* itself is 
not zero as the cell centre does not lie on the boundary. Again, the situation is 
illustrated at the top of Fig. 1. Thus a simple estimate of the gradient in these cells 
suffices to evaluate the remaining two fluxes. Note also that there is one cell, near the 
origin, which has three zero fluxes which can be treated similarly. This prescription 
has the advantage of being reasonably staightforward, but it is rather crude, and 
better results might be obtained with some kind of matching procedure. 

We now have a complete description of our code and it remains to describe the 
results obtained with it. 

6. THE RESULTS 

For simplicity we consider a set of problems with only one free parameter: the 
scale height of a cold exponential atmosphere, zH. Thus we consider the following set 
of initial and boundary conditions: 

9(t = 0) = 

R(B,O)= 1, $B,O)= 1. 

Note that the initial conditions are chosen so as to satisfy the shock conditions. This 
configuration is allowed to evolve from t = 0 to t = 50 with various values of zH. We 
shall show here the results for two cases: zH = co, to see how closely the scheme 
represents a spherical explosion, and zH = 2, to model the effect of a density 
variation. In both cases we take y = i. 

In Fig. 1 and 2 show the computational grid, contour plots of density, temperature 
and pressure and velocity plots for zH = KI and zH = 2, respectively. The runs were 
done with Courant number K = 0.5 and 148 time steps were needed for Fig. 1 and 
159 for Fig. 2. These runs took about 100 s on the Leeds University Amdahl V7A 
computer. About 60% of this is spent in calculating the mapping so that by using a 
cheaper method for this, and with more efficient programming, we feel that these 
times could easily be halved. 

Figure 1 shows that the spherical property has been well preserved. The total 
variation in radius is about 3% and all but five points at each end lie within a 1% 
range. This shows the general stability of the code and the mapping. The higher inac- 
curacy at the points near the axis is one aspect of a general phenomenon that the 
results are rather erratic there; see particularly the pressure plot. This is due to the 
cp = 9*/aJ relationship which means we have to divide by ZD to get the plotted 
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variables from the computational variables. Thus inaccuracies near the axis are to be 
expected, but should not affect the overall accuracy of the code. It turns out also that 
the time step is determined by cells near the axis and as a consequence it oscillates 
slightly. However, runs in which the time step was prescribed smoothly as a function 
of time gave essentially identical results, so this effect is also not important. 

Turning now to Fig. 2, we see that the results are qualitatively as expected with the 
explosion having broken out to the right, in the direction of lower density. The 
highest densities and pressures are observed behind the shock moving into the dense 
material (the maximum preshock density is about 21), whereas the highest 
temperature and velocities are behind the right-moving shock (the minimum preshock 
density is about 2 x 10m5 at this time). Note that the stagnation point is around 
z = -4 but that the material initially forming the explosion has been pushed to the 
right and become prolate to the axis. Inspection of an entropy plot (not entirely 
reliable since shocks have propagated) suggests that this material is now centred 
around z = 8. We now try to get a more quantitative check on the results by 
following the procedure outlined in Section 1. 

The first stage is to adjust our code to the LP method and we reduce the equations 
to the appropriate form in Appendix A. The differences are changes in the definition 
of the h coefftcients of (3) and the appearance of a source for the z-momentum. These 
changes are easily incorporated and the results, for zH = 2, are shown in Fig. 3. The 
results are similar, but reveal differences in detail. For example the multivalued 
pressure at the origin, implicit in the LP method, is clearly illustrated. It can be seen 
that the axial inaccuracy has caused bulges in the shock shape on the axis which are 
more pronounced than for the correct equations. This is also true of a spherical LP 
caiculation and it appears that the problem is greater for this method, possibly due to 
the z-momentum source. 

A first check on the code is that the velocities should be radial and this can be seen 
to be the case in Fig. 3. A detailed check consists in verifying that the structure along 
each radius is the same as that in the equivalent spherical model. We have made 
“exact” spherical calculations with a one-dimensional version of the code with 
superior resolution. In Fig. 4 we compare the temperature structure along the m axis. 
In these spherical calculations a compression wave is propagated inwards from the 
initial position of the outer shock and eventually steepens into a further shock. This 
reflects from the centre and moves steadily outwards. The continuous line in Fig. 4 is 
the accurate temperature structure and shows a plateau. The temperature rises inside 
this plateau because the shock is very strong on initial reflection and decays as it 
moves out. It falls outside the plateau because the outer shock is slowing down. The 
plateau has been diffused by the low resolution calculations (in one dimension and 
the LP method) as one would expect but otherwise the agreement is good with the LP 
calculation, in fact doing slightly better than the one-dimensional spherical 
calculation with the same resolution. Figure 4 also shows the temperature structure 
along the a axis for the correct two-dimensional equations and it can be seen that 
this is completely different from what is obtained by the LP method, indicating a 
different shock history. 
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FIG. 4. Temperature structure along the m axis from various calculations Continuous line: one 
dimensional with lOOcells. Crosses: one dimensional with 20cells. Circles: two dimensional LP 
calculation with 20 radial cells. Squares: two dimensional correct calculation with 20 radial cells. 

Finally we run the problem for a problem with a known analytic LP solution. This 
is described in Appendix B. The principal features of the density distribution are that 
it becomes infinite at z = -(0.03)-2’3 N -10.36 and that it decays to zero in the 
other directions. The explosion hits the singularity in a finite time, t N_ 45.778, and so 
we look at the results at t = 45. In Figures 5 and 6 we show respectively the solution 
obtained with the LP code and the LP exact solution. In Figure 7 we make a more 
detailed comparison by plotting the radius against position angle for each model. It 
can be seen that the agreement is good, except on the axis which we know to be not 
well treated. The contour diagrams, too, show that the details are essentially correct 
and we conclude that the LP code gives accurate results. There is good reason to 
believe that the code for the correct equations is somewhat better. 

7. CONCLUSION 

We have described a code which solves axisymmetric free boundary problems for 
hyperbolic systems with great economy and considerable simplicity. We have tried to 
show that results of reasonable accuracy are obtained, though this is hard in an area 
which is intractable analytically. At any rate the economy shows that good resolution 
may be obtained, if desired, and the simplicity shows that extensions to more 
complicated problems can-be made straightforwardly. For example we might want to 
study the interaction of an explosion with a rigid wall, or we could match onto some 
other solution at the boundary along the lines described in Section 1. Although the 
principal motivation for the work is the study of explosive phenomena in a non- 
uniform astrophysical medium, there must be many other areas in which the 
approach would be successful. 

581/52/3-2 
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FIG. 5. As Figs. l-3 for analytic LP problem. Contour units are now 0.005 for density, 0.00005 for 
pressure and 0.002 for temperature. 
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FIG. 6. Analytic solution to LP problem drawn as in Fig. 4. 
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FIG. 7. Radius, R(B), drawn against angle for the analytic LP problem. The continuous line is the 
analytic solution of Fig. 5 and the circles are obtained from the LP code results of Fig. 4. 

An important point which has emerged from the work is the reliability and 
accuracy of the flux splitting method. The development of the code has involved 
several programs utilising this method to solve simple one-dimensional problems, 
one-dimensional analogues of the present scheme and two-dimensional wind tunnel 
problems. In all cases satisfactory results were obtained with no need for fine tuning 
of any kind. It is clear that working with the transformed equations makes great 
demands on the algorithms and that flux splitting works because it uses both the 
conservative properties and the characteristic relations in such a way as to make the 
discretised equations as fluid-like as possible. A useful consequence is that boundary 
conditions can be applied in an essentially routine way, with due account given to 
characteristics entering and leaving the grid. Presumably, even better results will be 
possible when the method has been further improved and relined. For example there 
may be superior ways in which the flux can be split and certainly the treatment of the 
source terms, rather crude here, could be enhanced. And for the present problem 
some method for improving the results near the axis would be desirable. 

We conclude with some remarks about the usefulness of the LP method. Figures 2 
and 3 for the exponential atmosphere show that although the LP method gives 
qualitative agreement with the results obtained with the correct equations, the detailed 
distributions of temperature and pressure are quantitatively wrong. However it turns 
out that for the analytic LP problem the results using the correct equations are very 
close to the LP solution. This may be partly because the pressure becomes zero at the 
centre for this problem and so is not multivalued in the LP approach which thus 
avoids one of its most obvious failings. We conclude that the LP method can give a 
rough picture of the evolution of an explosion which becomes less accurate as the 
explosion extends over more scale heights. However it is not capable of giving a 
reliable picture of the structure of the explosion, though its shape is one of the 
properties better modelled. None of this is very surprising. 
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APPENDIX A: THE LP EQUATIONS 

The LP method is described by the usual spherical equations, with the proviso that 
the functions depend on 8. That is: 

$ (r2PG) + ; P’@u, + PI) = 2rp, 

$ (rZE) + z (r2u,(E + p)) = 0. 

(AlI 

It is useful to define the vector 

Nb 6 = sin(e) W-49 + co44 wd = 

with the same parameterisation as before in terms of u m and U, and where 

u,= 24, sin 8, 

u, = u, cos e. 

The appropriate equations for 4 = a(o arc then 

Applying the mapping to obtain the equation for p* we obtain new h coefficients in 
terms of the old ones: 

h - sin(e)(h, sin 0 + h, cos O), 1LP - 

h 2Lp = cos(O)(h, sin 0 + h, cos 0). 

In the sources, the column vector (0 1 0 O)T is replaced by (0 1-cos 20 sin 28 0)r. 

APPENDIX B: THE ANLYTIC LP PROBLEM 

We need to find an analytic solution to the spherical equations (Al). We do this 
by demanding 

u,(I, 8, t) = u(e, qr. 
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The continuity and energy equations are satisfied by solutions of the form 

P=f-3D(r)> 
P =f-“P(l), 

c=f, f= exp (jl Udt). 

We are assuming y = 5 and < is a Lagrangian variable. The momentum equation then 
requires (in separable form) 

3 a2ff 1 dP 
f ~+i;D~=o. 

The separated equations can then be solved and when the solution is fitted to a shock 
moving into cold material we find the density must be of the form 

P&> = 
1 

ar2(1 + bF)3’2 ’ 

where a and b are constants. As before we take the initial shock radius and velocity 
both to be one, for which 

3 9bt2 
f2=1+T'+lq1+b)' 

and the shock radius is R, = f 4/3. The functions D and P are given by 

D(T) = 45 
a( 1 + br6)3’2 

for <> 1. 

P(l) = 
3r3 

4a(l + b)(l + br6)“’ 

We also take this to be the solution for [ < 1, that is, for gas that is not shocked. 
Note that if -1 < b < 0 the density becomes infinite and the singularity is reached at 
time t = 4( 1 + b)/(-3b). 

We now arrange that a and b be functions of 8 to give a complete LP problem and 
choose them as follows: 

b = 0.03 sign(cos 8) 1 cos 8(3’2, 

a = (1 + b)-‘. 

These have the effect that the density becomes infinite on the plane z = -(0.03))2’3 
and that each solid angle contains the same amount of energy, the LP assumption for 
a point explosion, which is violated for our initial conditions for the exponential 
atmosphere. 
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